Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications
نویسندگان
چکیده
In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of -covers and envelopes to the study of some properties of the class . We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra 201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes. 2001 Academic Press
منابع مشابه
On generalizations of semiperfect and perfect rings
We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel, that is, every simple right $R$-module has a flat $B$-cover. We give some properties of such rings along with examples. We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...
متن کاملFlat Covers of Representations of the Quiver
Rooted quivers are quivers that do not contain A∞ ≡ ··· → • → • as a subquiver. The existence of flat covers and cotorsion envelopes for representations of these quivers have been studied by Enochs et al. The main goal of this paper is to prove that flat covers and cotorsion envelopes exist for representations of A∞. We first characterize finitely generated projective representations of A∞. We ...
متن کاملQuasi-projective covers of right $S$-acts
In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...
متن کاملMorphisms Determined by Objects and Flat Covers
We describe a procedure for constructing morphisms in additive categories, combining Auslander’s concept of a morphism determined by an object with the existence of flat covers. Also, we show how flat covers are turned into projective covers, and we interprete these constructions in terms of adjoint functors.
متن کاملRIGID DUALIZING COMPLEXES
Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.
متن کامل